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The toroidal bubble 

By T. J .  PEDLEY 
Department of Mechanics, The Johns Hopkins University, Baltimore 

(Received 15 November 1966 and in revised form 22 November 1967) 

It has been observed by Walters & Davidson (1963) that release of a mass of gas 
in water sometimes produces a rising toroidal bubble. This paper is concerned 
with the history of such a bubble, given that a t  the initial instant the motion is 
irrotational everywhere in the water. The variation of its overall radius a with 
time may be predicted from the vertical impulse equation, and it should be pos- 
sible to make the same prediction by equating the rate of loss of combined kinetic 
and potential energy to the rate of viscous dissipation. This is indeed seen to be 
the case, but not before it is recognized that in a viscous fluid vorticity will 
continually diffuse out from the bubble surface, destroying the irrotationality 
of the motion, and necessitating an examination of the distribution of vorticity. 
The impulse equation takes the same form as in an inviscid fluid, but the energy 
equation is severely modified. Other results include an evaluation of the effect 
of a hydrostatic variation in bubble volume, and a prediction of the time which 
will have elapsed before the bubble becomes unstable under the action of sur- 
face tension. 

1. Introduction 
The toroidal bubble is a phenomenon first observed by Walters & Davidson 

(1963) in the course of their investigation into the development of an initially 
spherical bubble of air in water. Its form is that of a vortex-ring with a buoyant 
air core, and the circulation associated with the vortex-ring is produced not by 
viscous forces, but by the inviscid process of bubble formation, so that the flow 
around it is initially irrotational everywhere. The present paper seeks to trace 
the history of a toroidal bubble after its formation. We shall not only calculate 
how its overall properties (radius and velocity of rise, for example) vary with time, 
but we shall also examine the flow around it, and inquire into the stability of the 
bubble, in order to predict if and when it will eventually break up. 

Our notation is introduced by means of figure 1. The cross-section of the air- 
core is assumed for the moment to be a circle of radius b,  and the curve joining the 
centres A of all such circles is itself a circle with radius a and centre instantaneous- 
ly a t  the fixed point 0. The plane of this circle is horizontal, and the axis Oz is the 
upwards vertical. Two sets of co-ordinates will be used in the course of this paper: 
cylindrical polar co-ordinates ( r ,  $, z) ,  where r and z are defined in figure 1, and $ 
is the azimuthal angle; and the set (s, x, $), where (s, x) are polar co-ordinates in 
a meridional plane, centred at  the point A (values of s cos x less than ( - u) are 
prohibited). Let the circulation about the bubble be 2n-F, defined as the circula- 
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tion round a large material circuit threading the ring along Oz (we assume that 
the fluid through which the bubble rises is effectively unbounded), and assume 

FIGURE 1. Meridional section of the toroidal bubble, summarizing the notation used in 
the text. 

that I’ remains constant with time. If the ambient fluid is inviscid, this follows 
from Kelvin’s circulation theorem, and the assumption is still true in the viscous 
case, at least until any vorticity which may be generated a t  the bubble surface 
has diffused to the axis; it will be shown that only a negligible amount of vor- 
ticity ever reaches the axis. From their measurements of a, b and the velocity 
of rise U of the bubble, Walters & Davidson observed that I? is indeed approxi- 
mately constant, provided that Lamb’s (1932, p. 241) formula for the velocity 
of translation of a vortex-ring in terms of its circulation and core dimensions is 
valid here. The value thus found for I’ was close to that which Walters & David- 
son predicted in terms of g (the gravitational acceleration) and V (the bubble 
volume), viz. 3 

277 
r = - (gv)a. 

We shall further assume that b is at  all times much smaller than a. 
The overall properties of the bubble can be most easily deduced from the verti- 

cal impulse equation (as for any buoyant vortex-ring, see Turner 1957), which 
may be written 

where F is the resultant force on the water in the vertical direction, due in this 
case to the buoyancy of the bubble, less the rate of momentum loss suffered in 
a viscous wake, if any. P is the vertical ‘fluid impulse’ associated with the 
vortex-ring at  a given time t ,  and is given by the formula (2.1) below (Lamb 
1932, p. 214 et seg.); P may be regarded as the net impulse which would be re- 
quired to set up the flow instantaneously from rest. 

It is instructive also to deduce the bubble properties from the energy equation, 
for it is only there that it becomes clear how great the effect on the flow of a non- 
zero viscosity actually is. The energy equation is 

dPldt = F ,  (1.2) 
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where T and C2 are the kinetic and potential energies of the system, and D is the 
total rate of loss of energy by viscous dissipation, zero in an ideal fluid, but not 
zero in a real fluid, even when the flow is irrotational. The rate of change of poten- 
tial energy, neglecting the small contribution from surface tension (that it is 
small for typical bubbles may be verified a posteriori), is given by 

where p is the density of the ambient fluid, h is the depth of the bubble beneath 
a fixed reference level, U is its velocity of rise, and V (its volume) is assumed con- 
stant. The remaining quantities in (1 .2) and (1.3) and U ,  cannot be determined 
until we have an acceptable model for the flow round the bubble. 

Section 2 deals with the case when the ambient fluid is inviscid, and it is shown 
that formulae derived for a homogeneous vortex-ring (from Lamb 1932, $8 162-3)) 
and giving P, T ,  U in terms of I?, a and b may be used with only slight modifica- 
tion (the assumption b/a < 1 is here essential). Expressions for a and U as func- 
tions of time t are deduced: a ultimately increases as t ) ,  and U decreases as 
t-Blogt. It is also shown that if the flow is assumed to remain approximately 
irrotational in a viscous fluid, so that Lamb's formulae may again be used almost 
as they stand, the equations of impulse and energy yield conflicting results. 
Presumably, therefore, the flow does not remain approximately irrotational, and 
vorticity is continually created at  the bubble surface, whence it diffuses out into 
the fluid. Section 3 contains an analysis of that diffusion, and it is shown that the 
vorticity distribution becomes approximately Gaussian, with an effective radius 
b' which also increases as t4. Section 4 demonstrates that formulae similar t o  the 
inviscid ones may still be used for P, T ,  U ,  etc., but with b' replacing b ,  and the 
solution for a as a function oft  turns out to be the same as in the inviscid case, 
while U decreases as t-4. 

In  $ 5 we compute the effect of a hydrostatic variation of the volume V as the 
bubble rises, and it turns out not to be entirely negligible from an experimental 
point of view. (All predictions in this paper are formulated with reference to a 
typical bubble from Walters & Davidson's experiments, to underline the fact 
that they apply to a realizable situation.) Section 6 analyses the stability of the 
bubble, assuming that the curvature of the air core is irrelevant in a first approxi- 
mation, when b/a < 1. Initially, the circulation a t  the bubble surface is rapid 
enough to counteract the destabilizing influence of surface tension, but it is re- 
duced continually by the action of viscosity, so that at  a predictable moment 
surface tension will become dominant, and instability will occur. The complete 
life-cycle of the toroidal bubble, from formation to disintegration, will thus have 
been described in detail. 

2. Development of the bubble in an inviscid ambient fluid. 
The irrotational flow with circulation 27rF round a toroidal bubble is instan- 

taneously the same as that round the core of a homogeneous vortex-ring of the 
same dimensions and circulation, as long as the distribution of azimuthal vor- 
ticity in that core is suitably chosen. The choice must be made so that the bubble 
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surface becomes a stream surface of the combined flow, separating rotational 
from irrotational motion. The shape of the bubble surface itself, however, is 
determined by its being a surface of constant pressure (incorporating hydro- 
dynamic, hydrostatic, and surface tension components), so the problem is an 
implicit one, whose solution will yield both the shape of the bubble surface and 
the equivalent distribution of vorticity in the core. Assuming that the flow is 
axisymmetric, the impulse Pl and kinetic energy Tl of the combined system may 
then be calculated by the methods of Lamb (1932, $ 5  162-3)) whence the impulse 
P and kinetic energy T of the irrotational part of the flow are obtained by sub- 
tracting the momentum Po and kinetic energy To of the fluid undergoing rotational 
motion in the core. 

Lamb’s formulae for the impulse and kinetic energy of an arbitrary axi- 
symmetric distribution of azimuthal vorticity w are 

p1 = n p / / w r z d r d z ,  T~ = -np / /w$drdz ,  (2.1) 

where $ is the Stokes stream function of the flow, p is the fluid density, and the 
integration is taken over the meridional half-plane 0 < r < co, -co < x < 00. 

As an example, Lamb calculates TI for a vortex-ring with a circular core (radius 
b)  of uniform vorticity (21?/b2), and obtains 

(the error term is estimated by extending Lamb’s analysis to a higher order in 
b/a).  For the same distribution of vorticity we obtain 

Now the cross-section of the core of a toroidal bubble will not be exactly circular, 
but if b/a is small, where b is now the mean radius of the core, the boundary of the 
cross-section will be of the form 

where ( s , ~ )  are polar co-ordinates in the meridional plane, fl(x) is a periodic 
function, of order one, with period 2n, and Fl(b/a) is independent of x and is 
assumed to be a t  most of order (b/alog8a/b). This assumption is based on the 
actual shape of a ‘hollow vortex-ring’ in the absence of gravity and surface 
tension, as calculated by Hicks (1884) 

so(x) = b [ l - Z  (log?-i) cosx+o (;log;)]; (2.5) 

the effects of gravity and surface tension are assessed in $4 (they tend to make the 
core cross-section more nearly circular). Again, the equivalent vorticity distribu- 
tion cannot be exactly uniform, the simplest dynamically possible distribution is 
one where u / r  is uniform, and in general may be written 
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where f2, F2 have properties similar to fl, Fl and G,  is some function of slb, of 
order one. But even with these more general expressions for w and the cross- 
section boundarys,(x), Lamb’s methods yieldthesame formulae (2.2) and (2.3)for 
TI and Pl. The only quantity which does depend, to the first order in blalog 8a/b, 
on the forms of so(x) and w is the velocity of translation of the vortex-ring, U ,  
which may be calculated from the condition that there is no normal velocity 
across what was the bubble surface. If, for instance, the core cross-section is 
taken to be circular, and the quantity wlr uniform inside it, then U is given by 
Lamb’s formula 

(2.7) 

with n = t ,  but if so(x) and w take the more general forms (2.4) and (2.6), the 
value of n is in general altered (Hicks (1884) gives the value n = 4 for his ‘hollow 
vortex-ring ’). 

The vertical momentum Po of the fluid in the core of the equivalent vortex- 
ring is approximately the momentum of a quiescent ring of fluid, of volume V ,  
travelling with velocity U .  Now V = 2n2ab2, so that 

1b2 8a 
Po z pVU z 2n2pa2r--log-, 

2a2 b 

whence the impulse of the flow round the toroidal bubble is 

the second term of which is assumed to be negligible. Similarly, the kinetic energy 
To of the fluid in the core is approximately that of a cylinder of fluid of the same 
mass (p V )  and the same radius (b), rotating with angular velocity F/b2 and trans- 
lating with linear velocity U ,  and is approximately given by 

To M &r2par2. 

Thus T = T,-To = 2n2par2 

We may now calculate the time variation of the overall radius of the bubble, 
from both the impulse and the energy equations. In  the impulse equation (1.2), 
the only contribution to the force P is the buoyancy force gpV,  so that from (1.2) 

d and (2.8) we obtain 
- (2n2paT) = gp V ,  
at 

whence a2 = a%+-t g v  = ag+Clt (say), (2.10) 
2+r 

where a. is the value of a at  time t = 0. Equation (2.10) is accurate as long as 

b2 8a 
-log- + 1. 
a2 b 

(2.11) 
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TO the same accuracy, the energy equation (1.3), together with (1.4), (2.7) and 
(2.9), gives 

but V = 27r2ab2 is assumed to be constant, so b/b = -a/2u, and hence 

which again leads to (2.10), as long as n = & (although even without this, the 
leading terms in the equation give (2.10) still). 

Knowing a, we may now calculate the variation of U with time, from (2 .7 ) .  
In  particular, at  large times, we have 

(2.12) 

but l? is approximately given in terms of g and V by (l.l),  so that 77 is given in 
terms of g, V and t alone by 

(2. 12') 

It is interesting to compare this with the constant velocity of rise of spherical 
cap bubbles, where U CT gfV4 (Taylor & Davies 1950). 

3. The effect of viscosity on the flow 
If we were now to suppose that the flow round a toroidal bubble in a viscous 

fluid at  large Reynolds number were essentially irrotational, except perhaps in 
certain thin shear layers, we would be able to use the same formulae for P, T 
and U as for an inviscid fluid. The impulse equation would be unaltered, leading 
once more to (2.10). The energy equation, however, would have to contain a term 
describing the viscous dissipation of energy D, cf. (1.3). In  order to calculate D, 
let us approximate the flow round the toroidal bubble by the irrotational flow 
round a cylindrical bubble ofradius b; Lamb's (1932, p. 241, equation (4)) formula 
shows that this is a good approximation in a region close to the bubble surface, 
and, as will be evident, most o f  the dissipation occurs in that region. The dissipa- 
tion in a two-dimensional swirling motion, with tangential velocity v(s)  outside 
the cylinder s = b (in plane polar co-ordinates s, x) is 

dv v 
D' = p / r J r  (---)'sdsdX as s per unit length, 

where ,u is the dynamic viscosity of the fluid. For irrotational flow of circulation 
2nI'. v = F/s, yielding 

D' = ~ per unit length. 

Multiply this by 2nu, the overall circumference of the bubble, and obtain for 
the total dissipation in the irrotational flow round a toroidal bubble: 

4npr2 
b2 

D=- 8n2,uar2 [l+ 0 (i) j , 
b2 ( 3 . 2 )  
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where the error is consequent upon the neglect of the curvature of the bubble 
core. In  fact, an exact calculation of the dissipation in the flow round a vortex- 
ring is possible (see Pedley 1966, chapter IV, § 6, where the calculation is performed 
for the special case of a circular core of uniform vorticity) and it results precisely 
in equation (3 .2 ) )  justifying the above approximation. 

However small ,u may be, the continual increase of a/b2 ultimately makes 
dissipation significant and the energy equation (1.3) yields a possible steady solu- 
tion, for which 

D = gpVU, 

and T ,  a ,  U ,  b are all constant in time. This conflicts with (2.10) and indicates 
that the flow does not remain essentially irrotational. Clearly, all vorticity 
creation must take place at  the bubble surface, where the condition of zero 
tangential stress is violated by irrotational flow. What we now have to investi- 
gate is the manner in which that vorticity diffuses out from the bubble surface, 
and its effect on the impulse and energy equations. 

The diflusion of vorticity from, the bubble surface 

In  order to make the problem tractable, let us assume that the cross-section of 
the bubble is circular, so that in the co-ordinate system (s, x, $), the bubble 
surface has equation s = b (i.e. we neglect blalog 8ajb compared with unity). 
We seek the $-component of vorticity, w ,  as a function of space and time, under 
the conditions that it is initially zero everywhere, and that the tangential stress 
on s = b is zero. The problem is complicated by the fact that the overall radius a 
of the bubble must be permitted to vary with time; if a increases with time, 
azimuthal vortex lines are continually stretched, so that their strength increases, 
and the rate of diffusion is correspondingly enhanced; however, b simultaneously 
decreases (to maintain the constant bubble volume), and this shrinking of the 
radial lengtJh scale is accompanied by an inwards convection of vorticity, in- 
hibiting the diffusion. The combination of these two effects must be taken into 
account. 

The vorticity equation in terms of the non-inertial co-ordinate system (s ,  x, 
#) is extremely complicated, so, as a first approximation, let us neglect the curva- 
ture of the bubble (and hence of the vortex lines), as in the above calculation of 
dissipation. This approximation requires not only that b/a be very small, but also 
that the vorticity be effectively confined to a region surrounding the bubble in 
which sla is everywhere small. The problem is now two-dimensional, and we use 
cylindrical polar co-ordinates (s, x, 6)) with corresponding velocity components 
(u, t i ,  w), in which the bubble surface is the infinite circular cylinder s = b(t) ,  and 
the init,ial flow (for s > b)  is that of a potential vortex of circulation 2nF.  The 
whole system is uniformly stretched in the g-direction, in such a way as to keep 
the bubble volume (27r2ab2) constant. Thus, since a measure of the axial length 
scale is the overall circumference 2n-a of the toroidal bubble, we have 
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corresponding component of the vorticity equation is 
By symmetry the C-component of vorticity, w ,  is a function only of s, and the 

aw aw aw a2w l a w  
z+u- = w-+u  -+-- 

as ag (as2 as) 7 
(3.4) 

where u is the kinematic viscosity of the fluid and aw/a[ is given by (3.3). The 
radial velocity u is determined by the continuity equation 

s as 

whose sohtion, from (3.3) and the condition u =b(t) on s = b(t), is 

u = bs/b. (3.5) 

Equation (3.4) for w now becomes 

but 

is( 2) a b a  
- (sw)+- -  (8%) = v- 
at b as s- ; 

l a  
w = - - (sv), 

s as 

so (3.6) has a first integral 

as s as 1 a b a  
- (sv) + - s - (sv) = vs - - - (sw) +f(t), 
at b as 

where f(t) is a function of integration. The boundary conditions on v are 

sv = r, t = 0, s > b(o) ,  

sv-+r, s/b+ao, t 2 0, 

!? ( y )  = 0, s = b(t), t > 0, 
as s 

(3.9) 

(this last being the condition of zero tangential stress on the bubble surface), 
and the second of these shows thatf(t) is identically zero. 

The problem can be further simplified if we refer it to fixed boundaries by 
means of the transformations 

The equations and boundary conditions finally become 

c=1, 7 = 0 ,  x > 1 ,  1 
C + l ,  x+m, 7 2 0 ,  1 

ac 
- = 2c, x =  1, 7 > o,J 
ax 

(3.10) 

i (3.11) 

which is a typical diffusion problem with fixed boundaries. The exact solution 
may be obtained in the form of an integral, by the use of Laplace transform 
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techniques (see Pedley 1966, chapter v), but for our purposes it is sufficient to 
have the well-known asymptotic solution for large 7, viz: 

C -  l - e x p ( - ~ ~ / 4 7 )  as T+OO, (3.12) 

which is in fact accurate everywhere to within 2% if T 2 1. The asymptotic 
form of the vorticity distribution may be obtained from (3.7), (3.10) and (3.12) 
and is given by r 

f3 g p P (  -&) , (3.13) 

provided that s ja < 1 everywhere in the region of appreciable vorticity. The 
vorticity distribution is thus Gaussian, with an effective radius b‘(t) given by 

(3.14) 

if the condition of constant bubble volume is applied. The conditions for validity 
of this solution are b’ja < 1 and r 2 1. Before we can verify that they are satis- 
fied, we must know a as a function oft ,  so in the next section we assume the 
Gaussian distribution (3.13) in order to calculate a, and then check that the pro- 
cedure is self-consistent. We notice here that if, at  large times, a2 increases as 
Clt, cf. (2.10), then b‘2 increases as $vt (from 3.14), and the condition b’ja < 1 
reduces to ( 8v/3Cl)t 3 1, which depends on the given physical parameters of the 
bubble. 

4. Development of the bubble in a viscous ambient fluid 

tend rapidly to the form given by (3.13), under the condition b’ja < 1, i.e. 
The distribution of vorticity generated at  the bubble surface has been shown to 

2 r  
w = b’2 exp (- &) [ 1 +O (: log;)]. 

Lamb’s formulae (2.1) for the impulse and kinetic energy of a distribution of 
ring vorticity may be applied to the distribution (4.1) as much as to those of 
$2, although this time the s-integrations must extend from zero to infinity (the 
contribution from sjb‘ 2 3 is negligible, and that from s < b is a small correc- 
tion, tending to zero as t- tm and b/b‘+O, which will also be ignored; i.e. we 
assume P = PI and T = TI). If the error term in (4.1) is periodic in x (as it must 
be on physical grounds), the results of the calculations are 

and (4.3) 

where N = 2 + +(log 2 - 7 0 )  z 2.06 

(yo is Euler’s constant), a value little different from the 2 obtained in $2 on the 
assumption of an almost circular distribution of almost constant vorticity. The 
velocity of translation of the vorticity distribution (4.1) depends, as for the 
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distributions of 5 2 ,  on the exact condition employed to define it. All methods give 
the formula ( 2 . 7 ) ,  with b' in place of b, but with various values of n, and possibly 
an increased error term. 

Because equation (4.2) for the impulse has the same leading terms as (2.8), the 
impulse equation (1.2) for the bubble in a viscous fluid will be exactly the same 

( b )  
FIGURE 2. Meridiond section of the streamline pattern in the irrotational flow past a 
vortex-ring of small core cross-section (shaded area) : b'ja < 1. Axes fixed in ring. (a)  
bf /a  > 1/36; ( b )  1/35 < b'/a < 1/86. 

as in the inviscid case, provided that there is no momentum loss in a viscous wake. 
To see that the actual momentum loss is indeed negligible, consider the stream- 
lines of the irrotational flow round a vortex ring whose vorticity distribution is 
characterized by a radius b', such that b'la is small. Qualitatively, they are as 
shown in figure Za, at least when b'ja is greater than about 1/35 (if b'/u is less than 
about 1/86, the region of closed streamlines becomes a ring, and there exist 
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intermediate values of b‘la for which this region is simply connected, but re- 
entrant, as in figure 2b). The shaded portions of figure 2 are circles of radius b’, 
within which most of the vorticity lies when its distribution is approximately 
Gaussian. Now, the Gaussian approximation is asymptotically valid at large 
times (T 2 l) ,  but in any case the vorticity falls off exponentially from the bubble 
surface a t  all times, so that a negligibly small amount of vorticity ever reaches 
the edge of the region of closed streamlines (i.e. the boundary B of the fluid car- 
ried along by the vortex-ring, see figure 2) which is characterized by the dimen- 
sion a. Now all vorticity diffusing across B is convected around by the ambient 
flow, and is swept off downstream in a narrow wake (see Moore 1963, for a detailed 
analysis of this effect when the region of closed streamlines is a spherical bubble). 
Since in our case very little vorticity ever reaches B, it follows that very little is 
swept off in the wake, whence the flow outside B is very nearly irrotational, and 
the momentum deficit across the wake is negligible. This argument depends on the 
assumption b‘la < 1, which we must verify later. Note that the fact that there is 
no drag term in the impulse equation does not necessarily imply that the viscous 
dissipation in the flow is negligible, although very often (as in the flow past a 
spherical bubble) the two are connected. I n  our case, the dissipation takes place 
primarily inside the region of closed streamlines, and the viscous forces do not 
contribute to a momentum deficit across the wake. In  addition, the exponential 
decay of the vorticity away from the bubble surface applies as well to its reaching 
the axis of the ring as to its reaching B, and so the assumption of constant I?, 
discussed in 8 1, is justified. 

We thus see that the impulse equation, and hence formula (2.10) for a as a 
function of time, is the same in the viscous case as in the inviscid case. We can 
now calculate b’ as a function of t  from (3.14), and it is given exactly by 

which for large values of C, t/ai reduces to 

bI2 = $vt, (4.4) 

as predicted a t  the end of $3. We may also calculate the formula equivalent to 
(2.12) for U as a function oft ,  from (2.10), (4.4) and the leading term of (2.7); 
and a t  large times it becomes 

(4.5) 

when I’ is given by (1.1). Note that U oc t-4, which agrees with the similarity 
solution of Turner (1957) for buoyant vortex-rings, and should be contrasted 
with the inviscid results (2.12) and (2.12’). 

We can also write down the energy equation for the bubble in a viscous fluid, 
and show that it no longer conflicts with the impulse equation. The dissipation D 
may be calculated from (2.13), with v(s) given according to the Gaussian vorticity 
distribution as 

v(s) =:[l-exp( s -$)I. 
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The integrations are again simple, and the leading term in the result is 

D = 4n2paI'2/b'2. 

Thus the energy equation (1.3) this time gives 

which may be rearranged as follows 

(!!-Cl) ( l o g F - N + l  +(N-n-l)Cl 1 
- a2 
2t 

--.- - + ( N - n -  l)Cl, 

when b12 is given by (4.4). The asymptotic solution of this is exactly a2 = Clt if 
n = N - 8 z 0.56, but for any n the asymptotic solution has the form a2 = C; t, 
and the maximum error, with n = 1 say, for the particular bubble described be- 
low, is less than 1 %. Thus the energy equation yields almost exactly the same 
answer as the impulse equation, and we have clearly taken all the important 
physical effects into account. 

The value of a given by ( 2 .  lo), and the corresponding value of U obtained from 
the exact forms of a and b', are plotted as functions oft  in figure 3, for a typical 
set of bubble constants. Figure 4 is a graph of a against the height to which the 
bubble has risen since its release. It demonstrates that the bubble rises conically 
(radius cc height) as we would expect from Turner's similarity arguments again. 
(The broken curves in figure 3 are those obtained when hydrostatic variations in 
the bubble volume V are taken into account, see $5.) The values used for I', V ,  
etc., are taken from a typical bubble in Walters & Davidson's experiments, and 
are : 

We also require the physical constants 

I? = 50 em2 sec-l, V = 21 em3, a, = 5-0 em, b, = 0.46 cm. 

g = 980 ern s e r 2 ,  Y = 0.011 cm2sec-'. 

The use of the above formulae for a and U depends on the fact that b'ja < 1. In 
the typical example being considered, b'ja initially has the value bola, z 0.092, 
and tends rapidly to the value (8v/3CI)4 z 0.037, so it is always reasonably small. 
The use of the Gaussian distribution of vorticity requires r 2 1, which here means 
t 2 losee, and the particularly simple formula (4.4) for b' is valid if Clt/a$ 3 1, 
or t 9 1-2 see. Thus after about 10 sec in the life of this typical bubble, all the 
simplest formulae are valid; up to that time the more exact formulae must be 
employed. 

Finally, we may show that the effect of gravity and surface tension on the shape 
of the bubble cross-section does not exceed that of the dynamic pressure, so that 
the perturbation from circular form is at  most of order (bja) log (Sajb), as in the 
estimate (2.4) for so(x). The maximum variation of dynamic pressure round a 
toroidal bubble of circular cross-section (using Bernoulli's equation and a re- 
finement of Lamb's formula for the stream function near the bubble surface) is 
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of order pr2/ab  ( M 1000 dynes em-2 here), while the maximum variation in 
hydrostatic pressure is of order pgb ( M 500 dynes and in the apparent 
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FIGURE 3. Graphs of bubble radius a and velocity U against time t .  ___ , constant 
volume ; - - -, volume increasing. 
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FIGURE 4. Graph of bubble radius against height, demonstrating the conical shape of the 

region swept out by the bubble. X marks the point at which instability occurs. 

pressure due to surface tension y is of order y/b ( z  150dynes Thus our 
assumption in $ 2  was justified, especially since gravity tends to elongate the 
bubble cross-section horizontally, while the dynamic pressure tends to elongate 
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it vertically (cf. Hicks’s formula (2 .5) ) ’  and anyway surface tension tends always 
to restore circularity. 

5. The effect of a hydrostatic variation of bubble volume 
So far the bubble volume has been assumed to be constant. In  a real experiment, 

however, the volume of an air bubble increases as the bubble rises, owing t o  the 
decrease in hydrostatic pressure, and this will have some effect on the predicted 
variation of the bubble radius, say, with time. Assume that the mixture of air 
and water-vapour in the bubble is a perfect gas at constant temperature, let h 
be the depth of the bubble below the free surface of the tank when its volume is 17, 
and let p ,  = gpd be the atmospheric pressure, where d is taken to be 1030cm. 
Then the bubble pressure is p 5 gp(d +h),  so that Boyle’s Law p V  = constant 
becomes 

where h, and V, are the values of h and V at  time t = 0. The impulse equation 
dPldt = gpV therefore reduces to 

(d+h)v  = (a+h,)K, 

which is not as readily integrable as before because h varies according to 

dhldt = - U ,  

and U itself depends 011 a and t. However, a numerical integration of (5.1) 
is simple to perform, leading to a solution which, for our typical bubble, is 
compared in figure 3 with the constant volume solution. (For the case shown, 
h, was taken to be ad, but varying this quantity has no distinguishable effect on 
the solution.) The curves for a and U deviate from the constant volume curves by 
just less than 7 yo in a time of 40 see. This would be noticeable in an experiment, 
although by that time the bubble (a)  would have become unstable (see $6)-the 
time when instability would be expected to occur is marked t, on figure 3-and 
(b )  would have reached the top of the tank. The curve for a against (h, - h) is 
not, on the scale drawn, distinguishable from its constant volume counterpart. 

6. Stability 
The toroidal bubbles observed by Walters & Davidson were evidently stable. 

However, any toroidal bubble must after a certain time become unstable since 
the destabilizing influence of surface tension continually increases as b decreases, 
and the stabilizing effect of the circulation continually decreases as the velocity 
a t  the bubble surface decreases from the action of viscosity. The physical quanti- 
ties which might be important in the stability analysis are surface tension, vis- 
cosity, and the basic flow. It will become apparent that the only relevant para- 
meter of the basic flow is the velocity at the bubble surface. As in the calculation 
of the dissipation, therefore, the curvature of the core may be neglected, and the 
basic flow may be taken to be two-dimensional, consisting of a tangential velocity 
v(s) (where s is the radial co-ordinate) outside the infinitely long cylindrical 
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' bubble ' whose boundary s = b is a free surface under the action of surface ten- 
sion 7. From $ 3 ,  v is known to be given approximately by 

a t  least for times of the order of or larger than 3b2/8v. We assume that the critical 
time we are looking for is at least of this order, and must verify it afterwards. 

Pedley (1967) has investigated the stability to small disturbances of precisely 
this basic state. The analysis ignores viscosity, and is therefore likely to be valid 
only if disturbance time scales are much shorter than the viscous diffusion time 
3b2/8v. With this proviso, however, the results may be applied here directly. 
It is established that a necessary and sufficient condition for the system to be 
stable to an axisymmetric disturbance of wave-number k ,  as long as d(s2v2)/ds is 
positive (which it is), is that 

It is also demonstrated that for a non-axisymmetric disturbance whose azimuthal 
wave-number is the integer n, a sufficient condition for stability is 

provided that v/s is essentially constant near s = b. Thus if 

the flow must be stable, and even when that condition is not satisfied, it  is only 
a,xisymmetric disturbances (n = 0) which can be unstable. At the time when bv2(b) 
has decreased so far that (6.4) ceases to be valid, axisymmetric instability will 
set in. 

Thus when v is given by (6.1), the critical time t after which the bubble will 
become unstable is given by 

If  t ,  is large compared with 3b2/8v, so that the basic flow is approximately solid- 
body rotation near s = b, then (6.5) may be expanded in powers of (3b2/Svt,), 
and the first approximation gives 

For the typical bubble of $4 (bearing in mind the variation of b with time) t, 
is approximately 21 sec. The condition t ,  > 3b2/8v requires 

i.e. the Weber number W (comparing inertial and surface tension forces in the 
basic flow) must be large. In  our case, taking y = 74 dynes em-l, W z 70 > 1. 
The only other assumption to be checked is that, for the purposes of the stability 
analysis, the basic flow is approximately steady; that is, a typical disturbance 
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time scale t, is small compared with 3b2/8v. The obvious choice for t, comes from 
the equation of motion for axisymmetric disturbances (Pedley 1967, equation 
(5.1), t, N l/cr) where in general the order of magnitude oft, must be given by 

[s2v2(s)] = 0 (,2) I d  
= f l2  N -- 

1 
- 

t: s3 as 

Hence the condition b2/v B t, becomes F / v  $ 1, and requires a large Reynolds 
number in the basic flow. In  our case r / v  M 5 x 103, and is indeed large. 

The calculated value oft, is of course only approximate, but there would be no 
point using, for example, a more accurate expression for v (b ) ,  without at the same 
time making corrections for the lack of core circularity, and for the time- 
dependence of the basic stability problem, and these modifications would require 
excessive effort for a small return. The quoted formula for t, will certainly give 
an answer of the right order of magnitude. Note that a t  the time this bubble 
does become unstable, the deviations in the values of a and U due to the variation 
of bubble volume are still only 4 % (see figure 3 )  which would be almost negligible 
in an experiment. The value of a a t  time t is (from figure 3 )  just over 21 em, and 
from figure 4 we see that the bubble will then have risen 160 em, which is within 
experimental possibility, but is greater than the depth of Walters & Davidson’s 
tank ( 3  ft.). Even the very smooth bubble shown in plate 4 of their paper would 
have become unstable (according to this theory) if the experiment had been 
performed in a six- or seven-foot tank. 
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